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Abstract

In the Navy it is imperative that systems and equipment
work at their peak performance levels. Man-hours, money,
and even lives may depend on it. On a submarine, it may
even be more important, because fault conditions in
equipment can lead to increased noise levels, and form a
higher probability of detection by the enemy. There are
inherent problems associated with detecting fault conditions
in shipboard equipment. Most importantly, equipment must
often be shut down, and taken apart. This can cost
countless man-hours, and down time that an underway vessel
cannot afford. In addition, the equipment may be located in
an area that is very difficult or impossible to reach under
normal circumstances. This would include all equipment
found in the primary plant of a nuclear powered submarine.

Motor current signal analysis provides a solution to
these problems. It is a non-invasive technique for
monitoring and diagnosing mechanical problems associated
with equipment driven by electrical motors. The objective
of this project was to implement this process by (1)
examining the electrical power signal supplied to a Byron
Jackson sea water pump found in a U.S. submarine and (2) to
develop signal processing routines and classification
techniques to distinguish between the pump working with a
good impeller and the pump working with an eroded impeller.
Although this one fault condition was studied, this research
sought to develop a method by which other fault conditions
could be detected.

Key Word Search: signal processing pattern recognition
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Introduction

The art of signal processing can be implemented in many

applications outside the normal field of electrical

engineering. If a physical process produces a signal that

can be sampled in time with a sufficiently high rate to

preserve the information content, a powerful set of computer

based digital signal processing tools can be applied to the

problem. From diagnosing a heart condition, to finding

flaws in a metal weld, signal processing techniques can

provide invaluable information about the process. In this

project, signal processing routines were implemented to

detect fault conditions in a Navy pump.

In the Navy it is imperative that systems and equipment

work at their peak performance levels. Man-hours, money,

and even lives may depend on it. On a submarine it may be

even more important, because fault conditions in equipment

can lead to increased noise levels, and form a higher

probability of detection by the enemy. There are inherent

problems though, associated with detecting fault conditions

in shipboard equipment. Most importantly, equipment must

often be shut down, and taken apart to be examined. This

can cost countless man-hours and down time that an underway

vessel cannot afford. Also, the equipment may be located in

an area of the vessel that is very difficult or impossible

to reach under normal circumstances. This would include all
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equipment found in the primary plant of a nuclear powered

submarine.

The equipment must be monitored periodically, because

these fault conditions reduce efficiency, and can possibly

lead to the complete destruction of the system. This

creates a significant dilemma for a vessel. On the one

hand, monitoring these conditions is time consuming and

expensive. On the other hand, the failure to monitor these

conditions can lead to inefficient operation and the

possibility of extended time in dry dock. In the past a

compromise had to be made. Today, with the development of

relatively inexpensive and powerful computers this

compromise is no longer necessary.

Motor Current Signal Analysis is a technique for

diagnosing problems in mechanical equipment by monitoring

nothing more than the input electrical signal. The

induction motor acts as a bilateral transducer, converting

mechanical vibrations into electrical signal perturbations.

It provides a method for a non-invasive testing of

mechanical systems. It is an efficient and inexpensive

solution to the Navy's problem. It provides a means to

detect fault conditions while the equipment is still in

operation. Also, since this technique only requires access

to the electrical signal, it can be implemented with any

remote electro-mechanical equipment whose power lines can be

monitored. This would include a large set of equipment on aI
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Navy vessel.

The objective of this project was to develop the signal

processing routines and classification techniques necessary

to implement this method of fault detection. Data were

collected from a Byron Jackson Sea Water Pump found on a

U.S. submarine. The fault that was monitored was an eroded

impeller condition. This project not only provides a method

for detecting this specific fault condition, but furnishes

the groundwork for the development of test equipment to

completely monitor the pump's operation.
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Chapter One

Data Collection and the

Physical Apparatus

The first step in the project was to gather electrical

Idata from the Byron Jackson Sea Water Pump. The data were

in the form of a sampled time series that would later be

applied to a signal processing scheme in an off-line mode.

1.1 The Byron Jackson Sea Water Pump

The Byron Jackson Sea Water Pump is a centrifugal pump

that can be found on a U.S. submarine. The actual mock-up

used to conduct the tests was located at the Carderock

Division of the Naval Surface Warfare Center, Annapolis,

I

I ~Motor - Ekdte Dynamics
3 Speed

200 HP / 25 ]HP 1 3.1 HPIu~r 120/0130,
3 3 Phase 440 VAC

IResilient

Test Stand

Figure 1.l-The Byron Jackson Sea Water Pump



8

Maryland. The pump is shown in Figure 1.1. It is a

centrifugal pump driven by a three phase, 60 Hz, 440 Vac

induction motor. For this project, the tests were conducted

under fast speed, 1200 RPM, and under high suction pressure.

Tests were conducted using both impellers in good condition,

and impellers in the eroded condition.

A cross sectional view of a typical centrifugal pump is

shown below in Figure 1.2. The suction pressure is

developed by the vanes on the rotating impeller. As the

DISCHARGE

IMPELLER'

SUCTION," .

IMPELLER EYE VOLUTE CASING

Centrifugal pump.

Figure 1.2-A typical centrifugal pump

impeller rotates about the center shaft, a pressure

differential develops between the suction impeller eye and

the volute casing. Since the tips of the vanes are moving

faster than the center of the impeller, the Venturi Effect
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dictates that a suction will develop towards the outside of

the pump at the volute casing(Munson 135). Consequently,

the fluid is forced out the discharge pipe.

1.2 The Eroded Impeller Condition

Over its operating life, the impeller spins at various

speeds for long periods of time. As time passes its

original smooth finish becomes corrupted with grooves and

corrugations. These can lead to both inefficient operation

and increased noise levels. Since the impeller may become

unbalanced, this condition may induce vibrations that can

damage the entire pump.

I The eroded condition will affect the amount of torque

provided by the three phase induction motor. The torque

produced at the impeller is proportional to the power used

by the motor. It was postulated that changes in the torque

due to the eroded impeller condition would lead to changes

in the input power driving the induction motor. In other

words, the reflected load variations from the pump would

allow the fault to be detected in the power signal.

1.3 Data Acquisition

To implement this fault detection system, the power

signal would have to be recorded and digitally stored. The

analog equipment in Figure 1.3 was used to obtain the real
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power signal. The equipment was placed at the electrical

inputs to the three phase induction motor. Basically, the

individual, analog phase voltages were multiplied by their

corresponding phase currents to get the individual phase

power signals. Because analog multipliers were used, non-

linearities were introduced into the signals. These were

dealt with when the signals were later processed. The

individual phase voltages were then added together to get

the total instantaneous real power signal (P).

Seawater
Pump

P Motor

CT.

_ Y CT

V ab Instrumentation Gain Select
R= Transformer Current Attenuation

|a .___ _

IC

Filgure 1.3-Instrumentation used to obtain real power (P)

This real power signal (P) now had to be digitized and

stored for later processing. In order to sample a signal

without aliasing it, the highest frequency component of the

signal must be less than half of the sampling frequency(The

Nyquist Criteria)(Stremler 129). The analog signal (P) was



first applied to a precision analog low-pass filter with a

cut-off frequency of approximately 2900 Hz. This cut-off

frequency was chosen because the information was found to be

bandwidth limited to this interval. A sampling frequency of

6000 Hz was chosen to satisfy the Nyquist criterion. The

signal was then digitally sampled and recorded using a

digital tape recorder. The data were quantized by an analog

to digital converter with a 90 dB dynamic range(16 bits).

Each digital data segment was 2 minutes in duration.

This acquisition process was used to record the power

signals from both impellers in good condition and impellers

in the eroded condition. Twelve 2 minute samples were taken

using eroded impellers, and eight samples were recorded

using good impellers.

1.4 Data Transfer

HP Basic routines, provided by the Naval Surface

Warfare Center, were used to transfer the data to the

computer for later processing. The digital data were

transported through an HPIB bus into binary files on the

computer. These binary files were then converted into

MATLAB .dat-files. The data were now ready to be processed.

I

I
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Chapter 2

Digital Demodulation

The operation of a centrifugal pump centers around the

rotation of the impeller vanes. An impeller in good

condition would tend to be balanced and function smoothly.

The eroded impeller condition though, would cause vibrations

that would be superimposed on the normal rotation. This can

be seen intuitively as a type of modulation process. It was

hypothesized that this modulation property would be apparent

in the power signal. To exploit this characteristic, the

analytic signal was formed and used to digitally demodulate

the power data. The first step in the formation of the

analytic signal is the application of the Hilbert Transform.

2.1 The Hilbert Transform

If s(t) is a real signal, then the Hilbert

transform(Stremler 260) is defined as the convolution of

s (t) by (lhcr*t):

2.1
S h(t)S(t) ( mf'so.). -dX

After taking the Fourier Transform(Stremler 84) Of Sh(t),
and shifting to the frequency domain, we obtain:
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F(s h ))S h(M )=S(o) ). F( ) 2.2

and,

F lej-0- dt=j-sg(M)2.3

where F is the Fourier Transform operator, and sgn(o) is
defined as: sgn(m)= 1 for w>0, 0 for o=O and -1 for w<0
Thus,

S h(w )n(-j'sgn (D )).S(O )N-j.S(O ) for o >0

j.S(M ) for o<0 2.4

0 for Ooin

The Hilbert Transform is known as a quadrature function

because each component of Sh (M) is in phase quadrature with

S(c). In other words, the frequency components are 90

degrees out of phase with the original spectrum. Using the

Hilbert Transform of s(t), the analytic signal can be formed

and used to digitally demodulate the power signal.

2.2 The Analytic Signal
We define a complex function z(t), the analytic signal,

derived from the information carrying signal s(t) as:

z(t)s(t) + jis h(t) 2.5

It is important to note that, while s(t) is a signal that
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exists in the real world, z(t) is a contrived, complex

signal that exists only in the mind and on the computer.

After taking the Fourier Transform of the analytic signal,
and moving to the frequency domain:

F(Ot))OZ(e )Se ) +j.S h(e ) eS( ) + j.(-j.sgn(u ).S(q)) 2.6

From Equation 2.4,

Z(cD)-S(-).(1+sgn(w))=2.S(w) for w>O 2.7
S(s) for (D =0

0 for o <0

Thus, Z(cn) is an upper single-sidebanded signal in the

baseband. In other words, it is created by zeroing the

negative side of the original frequency spectrum, and

doubling the positive side, excluding the DC component.

This same technique is used to produce single-sideband

modulation.

If we start with a real, large carrier, amplitude modulated,
and/or angle modulated signal s(t):

s(t)=a(t)-cos (M c.t + (t)) 2.8

where a(t) is the amplitude modulating signal

*(t) is the angle modulating signal

cDC is the carrier frequency

it can be shown that z(t) is of the form:

z(t)s(t) + .'s h(t)na(t).os (w . ±+# (t))+ j.a(t).sin(w . +C *(t)) 2.9

tUa(t. ,2.10

Z~t~uaqlll
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At this point it is easy to see that z(t) is a complex
representation of the original signal s(t). Although it
does not exist in the real world, it can provide valuable
insight into the original signal s(t).
Taking the absolute value and phase of z(t):

12( t) -IS a ( t) .I Ie '\ " W '-t+ 4 (t)) ] ,, a ( t) .1I -i a ( t) l .1

Ph( z(t ) )sz(t)zaractanI~~) am/ ¢t + 0(t) 2.12

From Equation 2.11 it is easy to see that the absolute value

of z(t) produces the amplitude modulation a(t). The phase

of z(t) leads to the sum of the carrier signal and the angle

modulation V(t). A linear regression could be used to

remove the straight line carrier and retrieve the angle

( ) • Multiply the positive spectrum by 2
s =)C> F &

Zero the negative spectrum

Take the absolute value of the signal Take the phase of the signal and remove carrier

Figure 2.1-The algorithm to implement the analytic signal

on the computer
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modulation from the phase signal. The FM modulation could

be found by taking the derivative of the angle modulation.

In other words, the analytic signal provides a method to AM,

PM, and FM demodulate the original signal s(t).

2.3 Implementation on the Computer

To form the analytic signal on the computer, the

algorithm described in Figure 2.1 was employed. First, the

Fast Fourier Transform(Hush 102) was applied to the original

sampled time series s(n). Then, the analytic signal was

formed by doubling the positive side of the spectrum

(excluding the DC term), S(m), and zeroing the negative side

of the spectrum. Now, the Inverse Fast Fourier Transform

was applied, producing the time domain representation of the

complex analytic signal z(n).

The original AM modulation could be found by taking the

absolute value of the analytic signal. The phase of the

analytic signal produced the sum of the carrier signal and

the angle modulation. The carrier signal was then

subtracted, leaving only the phase modulation.

This system could be used to demodulate any digitally

sampled signal. For instance, if either a double sideband

large carrier AM or FM radio broadcast was digitally sampled

and stored, this process could be used to demodulate the

signal. The demodulated signal could then be applied to a

digital to analog converter and played through a speaker.

I I li n ---------
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..... .............

-1. __.62______A__0.65_0._

Figure 2.2-A large carrier double sideband AM modulated
signal (Carrier=150 Hz Modulation=50 Hz)

Sw ......... . ................................... ... ........ ............-........

10 .......i................ ....... ..... . . ......... [........

Figure 2.3-The magnitude spectrum of the AN signal
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Figures 2.2 and 2.3 show an amplitude modulated signal

and its corresponding frequency spectrum. These help to

illustrate the power of the analytic signal. In the

spectrum, it is important to note that the 50 Hz base band

information has been shifted about the carrier at 150 Hz.

After forming the analytic signal, the absolute value

was taken to AM demodulate the signal. From Figures 2.4 and

2.5 it is easy to see that the signal has in fact been AM

demodulated, and the information is back in the base band at

50 Hz.

0 . . ........ ....... ....... ... ... ................. ............ ....... ............

f 0

i 0•

0.4

4.4

T (mmson)

Figure 2.4-The AM demodulated signal
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..... ..... .... ..... ........ ... . . . .

Figure 2.5-The magnitude spectrum of the AM demodulated
signal

0 0 .2 .. .......... ............. ........ ...... ..

> 0. ....... ...

-0 6 ........... . . .... . . . . . . ...... .. ......... ................. .... ... .

Figure 2.6-An angle modulated signal (Carrier-100 Hz
Modulation=20 Hz V-3)
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2000

jI
2W

2W ..... ..................... ...... ............... .. ............... ...... . ............... ..........................

50 ............................ ..... . ...... i .. . .. ...... . ... .... .............. ..... .... ... ........ .........

1 000 200 0

Frequerncy(H)

Figure 2.T-The magnitude spectrum of the angle modulated
signal

A similar result occurs with an angle modulated signal.

Figures 2.6 and 2.7 show the time and frequency domain

representations of an angle modulated signal. The energy in

the signal is centered around the carrier at 100 Hz and

shifted off the carrier at multiples of the modulating

frequency. The energy shift follows a first order Bessel

function w.i.th 0-=3.

The analytic signal was formed, and its phase was

calculated. After fitting a linear regression curve to the

signal and subtracting the carrier, the 20 Hz of angle

modulation remained (Figure 2.8). Figure 2.9 shows that the

energy has been translated back into the base band at 20 Hz.
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2 ........ ........... ...... ........ ..... 1..... ...... - -----

. .... .. ..... .... .. .... .... .... .... .... .... ....

0 .. .... .. ..... ........ .... ... ... ... . ----- ---- --- -

-41

al f .ý O 014.

Figure 2.8-The angle demodulated signal

! 1 T 1

FuquuWCO0

FFigure 2.9-The magnitude spectrum of the angle demodulated
signal
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Consequently, the analytic signal provides an efficient

method for a computer to digitally AM, PM and FM demodulate

a sampled time series. This method can give further insight

into a signal that exhibits these modulation properties.

This process was used to demodulate the real power signal

recorded during the trials.
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Chapter 3

Ensemble Averaging

Often a real signal is composed of an information

carrying signal(ICS) masked in random Gaussian noise. If

the signal-to-noise ratio is high, a single Fourier spectral

estimate is sufficient to detect spectral lines in the

computed frequency spectrum. If the signal-to-noise ratio

is poor, then several spectral estimates must be ensemble

averaged to aid in the detection. The technique of data

segmentation and ensemble averaging is known as the Bartlett

smoothing procedure(Jenkins 255). This technique can be

used to detect spectral lines buried in additive Gaussian

noise even with extremely poor signal-to-noise ratios.

3.1 The Original Signal

Suppose we are given a signal f(t), composed of an

information carrying signal s(t), masked heavily by an

additive random noise n(t):

f(t)us(t) + n(t) 3.1

Let the rms voltage signal-to-noise ratio be defined:

SV= 3.2
N N a
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If the signal-to-noise ratio is poor, it will be

impossible to detect the information carrying signal s(t)

without further processing. In Figure 3.1, a 1 V 100 Hz

sinusoid is masked heavily in a 2.5 V., white Gaussian noise

signal. As expected, with a signal-to-noise ratio of .2828,

it is impossible to detect the 1 V sinusoid in the time

domain.

Is

10 .-.. ...... ... .......-1 ........ .................... ....................

0 ....... ..

., ................. .......... ..................... ........... ........... ........... .... .. .. ...........................
-15

1-u' (em)

Figu•ze 3.1-A I V 100 Hz sinusoid masked in 2.5 VU, of
white Gaussian noise

Even if we transform this signal to the frequency

domain, it remains impossible to detect the original

sinusoid. Looking at Figure 3.2, the spectral lines of the

original signal could be at 420 Hz or could be at 80 Hz.
From one estimate, there is no way to predict that the

spectral component of this signal actually existed at 100

Hz. The signal-to-noise ratio must be improved in order to
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:1
so . ........ .+•i.............. • i Ii •ii....... ....... ................ . ............ ! ..... . ....... ..... . ................ •ii ............... ••. ....

s .... •........ ............. . ............... . . ... ............. • .. .......+.............. + ...... .

sinusoidq(i record

extract the information from the original sinusoid.

! 3.2 Partioning the Signal

The first step in the ensemble average is to break the

I original signal into smaller, mutually exclusive time

records. If a signal is sampled at a freqency f, for a

total time T, the number of points in this time series is:

NoM mT'fs .

and the resolution in the frequency domain using a

rectangular data window(Stremler 139) will be:

1!. 3.4
S'T

I
I

..... ... .. .. . .... .... . . . .. ........ . . ..
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To partition the signal, a record length, t,,,, must be

chosen. The number of records then, will be:

T 3.5re

Each record will contain (Pr.c=Np,.t,/Nr.cords) points.

Consequently, record number (n) contains the following

points from the original series:

[(n- 1).Prec] to [(n.Pr.)- I]

where n is the record index, and where the points in the

original sequence are referenced from 0.

After the original series is partitioned, the magnitude

of the Fast Fourier Transform for each record is computed

and stored. Since the records are shorter than the original

time series, the resolution in the frequency domain will

diminish by a factor of NWrcord.-

3.3 The Averaging Process

Each of the individual short, frequency domain

estimates, or spectral records, have the same signal-to-

noise ratio as the original long time series. Taken

separately, each spectral record is of no more use than the

original series. If the records are ensemble averaged

together though, the signal-to-noise ratio improves

approximately as the square root of the number of averaged

records(See Section 3.4). As seen in Figure 3.3, after
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SO .......

Figure 3.3-The magnitude spectrum of the noise corrupted
sinusoid (10 records averaged)

.ao ............ 4.

................ ....... ....... ...... ....... ....... ....... ........ ......
2400 ...... ........... . .......... q.. ....... ........ . .....)..

2i2r 0 4-h0antd pcrmo h os orpe

200 sinusoid .... (50 ..recors average..... )
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averaging 10 records together, the signal-to-noise ratio has

significantly increased. It is now possible to detect the

original spectral lines at 100 Hz. After 50 records are

ensemble averaged, there is no doubt that the original

signal existed at 100 Hz. We can be more than 99% sure that

the original signal existed at 100 Hz (See Section 5.2).

Although the human mind has the uncanny ability to

perform precise filtering, it does not have the capability

to time average. Consequently, the computer is an ideal

tool to perform this averaging algorithm. It is important

to note that the magnitude of the frequency spectrum must be

used in the averaging process. It is impossible to average

in the time domain because both the period and phase of the

ICS are unknown. Taking the magnitude prevents phase

cancellations from occurring in the frequency spectrum.

For a fixed total data length, segmentation and the

ensemble averaging process have their trade-offs. An

increase in signal-to-noise ratio can only be achieved at

the expense of reduced frequency resolution. If the

original series is longer than necessary to resolve any two

required frequencies, then segmentation is possible and

averaging is an excellent method of improving the signal-to-

noise ratio.
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3.4 Improving the Signal-to-Noise Ratio

During the ensemble averaging, the amplitude of the

spectral lines due to the original signal increase

proportionally. By representing the noise in each spectrum

as an independent random variable, the central limit

theorem(Peebles 118) describes their sum. It dictates that

the sum of the random variables will be approximately

Gaussian(Peebles 44) in distribution with the following

properties:

1. The mean will be equal to the average of the noise

signal (approximately zero).

2. The standard deviation, which is commensurate to

the RMS noise voltage value in the spectrum, will be

proportional to the square root of the number of records

averaged.

Consequently, the signal-to-noise ratio in the ensemble

averaged spectrum grows approximately as the square root of

the number of records averaged.
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Chapter 4

Processing the Power Signal

The goal of this project was to find rugged signal

features that could be used to distinguish between a pump

working with a good impeller and a pump working with an

eroded one. The previously developed signal processing

techniques were tools used to achieve this goal. Used in

conjunction with more routine procedures, such as the Fast

Fourier Transform, and window carpentry(Hush 155), the power

data were processed to retrieve the required information.

4.1 The Initial Analysis

The first step in the analysis was to examine the

frequency spectra of the signals corresponding to both a

good impeller and an eroded one. Figure 4.1 illustrates a

sample of each type of spectrum. The signal-to-noise ratios

of the original power signals were extremely poor. Although

there seemed to be signal peaks in the good impeller

spectrum that did not exist in the eroded impeller spectrum,

these could have been due to the variance of the noise.

They were not statistically significant.

In order to increase the frequency resolution at the

lower frequencies, both the sampling frequency and record

lengths were modified. As mentioned before, the record
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FigUre 4.1-Magnitude spectra for power signals produced by
both a good impeller and an eroded impeller

length is inversely proportional to the frequency

resolution. The sampling frequency determines the highest

frequency component that can be independently determined.

This frequency, known as the Nyquist frequency, is equal to

one half of the sampling frequency. Before resampling the

digital data, the data were low-pass filtered at the Nyquist

frequency to prevent aliasing from occurring. A tenth order

digital Butterworth filter(Hush 285) was designed and

implemented to accomplish this.

Since the original time series were two minutes in

duration, the best possible frequency resolution was 1/120

Hz. To gain this resolution though would have entailed

computing a 720,000 point Fast Fourier Transform. This

would require more than seven million complex calculations,
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and would not lead to any improvement in the signal-to-noise

ratio! This was not a viable option. A compromise had to

be made between both the frequency iesolution and the size

of the FFT. As the frequency resolution increased, the size

of the FFT had to decrease. The compromise resulted in a

30000 point transform with 0.2 Hz resolution. Even with the

increased resolution at the lower frequencies, the signal-

to-noise ratio remained too poor to detect any rugged signal

features.

Next, the window carpentry was explored in order to

possibly enhance the signal. The finite time sampling of a

signal can be viewed as an infinite time sampling multiplied

by a finite shaped window. The samples outside the window

are set to zero. This product in the time domain is

transformed into a convolution process in the frequency

domain(denoted by a *).

-!

F(si l(t).window(t))-I .Signal(e) * Widow(*)i-L-1 • Signal(u).Window( - u) du 4.2.s 2-it ®

The normal sampling process naturally employs the use of a

rectangular shaped window(Figure 4.2). After convolving the

window spectrum with the spectrum of the original

signal(Figure 4.3), the energy tends to leak into the

neighboring frequencies(Hush 155). If there is information

contained in two neighboring frequencies with significant

differences in magnitude, information can be lost. As the
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Figure 4.2-The magnitude spectrum of a 0.05 sec
rectangular window

m -~ -c 1sReftguimr Wndow -

.2 ...... ....... ........... .... ............... ....... ................. .......

3 01 ....... ........ .... .... ...... .. ........ ........... ........... ... ........-. ......

25 0.05 seec Re.herofr Vdfidws

2 0 ........ ... ..... .......0. ........ ..... ..... . ....... ... ..... ....... .........

Figure 4.3-The leakage effects of the rectangular shaped
window upon a 200 Hz Sinusoidal Signal
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window length increases in the time domain, the leakage of

energy becomes smaller in the frequency domain. This

leakage is directly related to the frequency resolution. It

is imperative to adjust the window length, or record length,

to obtain the proper resolution.

Other types of windows such as the Bartlett, Blackman,

and Kaiser windows(Hush 155) were also applied to the data.

These windows tend to increase the width of the main lobe,

while reducing the amplitude of the minor lobes. In

application they did not act to enhance the signal.

Consequently, all further data analysis was done using the

natural rectangular window.

4.2 The Application of Ensemble

Averaging to the Undemodulated

Spectrum

After the initial analysis, it became evident that an

underlying problem was the extremely poor signal-to-noise

ratio. With a ratio this poor, it would be impossible to

find any rugged signal features from one record. In order

to improve the signal-to-noise ratio, the process of

ensemble averaging was employed on the amplitude spectrum of

the undemodulated data.

Figure 4.4 shows the effect of the averaging process on
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Figure 4.4-The magnitude spectra of samples ensemble
averaged 24 times

the undemodulated spectra shown in Figure 4.1. After

ensemble averaging 24 records together, the signal-to-noise

ratio increased by approximately a factor of 5. Now that

the variance in the noise had been significantly reduced,

the spectral peaks could be considered reliable. As we had

hypothesized, there seemed to be sor-e type of modulating

process involved. This was evidenced by the sidebands

associated with the spectral lines at 60 Hz, 120 Hz, 180 Hz,

240 Hz, and 360 Hz. At this point we decided to digitally

demodulate the power data in order to enhance this aspect of

the signal.

Sm m m m m ~ ~ m ~ m • • . . . . . . . . .............. .. . .. . .
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Figure 4.S-The signal processing algorithm

4.3 The Application of the Analytic

Signal

As mentioned before, this eroded imeller condition can

be viewed intuitively as a modulation process. In order to

enhance this feature, the analytic signal was formed from

the original power signal. Using both the analytic signal

and the process of ensemble averaging, the signal processing

scheme illustrated in Figure 4.5, was developed and

implemented. The algorithm involves breaking the original

two minute time series into 24, 5 sec time records. Both

the frequency spectrum and analytic signal were then formed

from each of the individual records. The analytic signal

was further used to AM, PM, and FM demodulate the power
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data. Finally, each of the different types of spectra were

ensemble averaged 24 times to improve the signal-to-noise

ratio.

This scheme was applied to all of the original power

data. Figure 4.6 depicts the results of the AM demodulation

process. Not only did the processed data have a reliable

signal-to-noise ratio, there seemed to be spectral lines

that were enhanced by the demodulation process. This

information could possibly help to distinguish between the

two conditions. Similar results occurred in both the PM and

FM demodulated spectra.

The results were even more promising when the two

spectra were overlayed(Figure 4.7). At certain frequencies

there were significant energy differences between the two

spectra. From an initial inspection of the different

samples, the disparities seemed to be statistically

significant. In other words, all the spectra of a certain

condition exhibited the same characteristics. Similar

energy differences existed throughout the other demodulated

spectra.

The signal processing scheme seemed to have worked; the

application of the analytic signal was the key. It

extracted information from the original signals that coulu

possibly be used to predict the pump's condition. It was

then time to enter the final phase of the project, namely

the classification stage.
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Chapter 5

Determination

of the Pump Condition

After a cursory examination, the information extracted

through the signal processing algorithms appeared to be

rugged. In other words it was statistically significant and

could be used to classify the data. This hypothesis though,

had to be put to the test. In order to determine the

condition of the pump, two classification techniques were

employed; the nearest neighborhood technique and a neural

net known as the perceptron.

5.1 Pinpointing the Rugged Signal

Features

The first step in predicting the pump condition was to

choose the rugged signal features that could be used to

distinguish between a signal produced by a good impeller and

a signal produced by an eroded one. Again, rugged means the

feature is statistically significant, and could be

reproduced during different trials. The first test was to

determine if the process was stationary(Stremler 500).

Tests were conducted using the same impeller under the

.. .. ..
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same conditions at different times. Although the background

noise level shifted slightly, the shapes of the demodulated

spectra remained identical. This suggested that the pump

process itself was stationary.

The next step was to find features that were common to

a certain condition and that could be used to differentiate

it from the other condition. To find these, a good and a

bad set of templates were formed. A template was created by

taking the already ensemble averaged spectra of a given

condition and ensemble averaging them together again. For

instance, to form the good FM demodulated template, the

ensemble averaged FM demodulated spectra from all the good

samples were averaged together again. Templates were formed

for the original spectrum, and the AM, PM, and EM

demodulated spectra. Thus, there were both four good, and

four bad templates. These templates provided a visual

representation of the average signal produced from a pump

working with a good impeller, and the average signal

produced from a pump working with an eroded impeller.

The four sets of corresponding templates were compared,

and examined for significant differences in energy. Since,

the background noise levels were virtually equal, the signal

peaks could be compared directly. The frequencies at which

these energy differences existed were designated as possible

rugged signal features. A criterion now had to be created

to determine whether or not these energy differences could
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be considered rugged.

5.2 The 1% Test

The test developed to determine whether or not a signal

feature was rugged was the 1% test. To pass the 1% test,

there had to be less than a 1% chance that the difference in

energy at a certain frequency was due to the variance of the

noise. In other words there had to be more than a 99%

chance that the energy difference was due to the information

and not due to the noise.

The development of the 1% test centers around the

Central Limit Theorem. The Central Limit Theorem states

that the sum of a large number of independent random

variables approaches a Gaussian distribution. The noise in

the different time records can be described by an

independent random variable. Consequently, the Central

Limit Theorem pertains to the ensemble average of the

individual records. In the limit as the number of records

approaches infinity, the distribution of the noise will

become Gaussian.

Since, each of the spectra was ensemble averaged 24

times, the distribution of the noise was assumed to be

Gaussian. To apply the 1% test, the difference in the

energy peaks was calculated at each possible rugged signal

feature. If the probability were less than 1% that the

difference was due to the noise, then the signal feature was
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considered rugged. Figure 5.1 shows the good and bad AM

demodulated templates overlayed. The marked frequencies

easily passed the 1% test, and were five of the rugged

signals features used to classify the data. Using this

criterion, 26 rugged features were found throughout the four

sets of templates. The specific breakdown of signal

features was as follows:

2 from the original spectrum template

4 from the AM demodulated template

8 from the PM demodulated template

15 from the PM demodulated template

Total: 29 rugged signal features

10 7I
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................I-----.. .................zi.r.y........ ........ .... .
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Fiueo 5.1-The good and bad AM demodulated templates
overlayed
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5.3 The Moving Average Filter

It is one thing to be able to identify the rugged

signal features visually, but the computer needs a method by

which to quantify them. Although the 1% test provided a

criterion to determine if a signal feature is rugged, it did

not provide a method by which to quantify it. To accomplish

this, a low-pass moving average filter was developed.

Basically, the moving average filter would compare the area

beneath a signal peak to the area beneath the noise

surrounding it, producing a signal-to-noise ratio. The

spectral peak width was assumed to be 0.6 Hz(This was

identified visually). The area under this frequency span

was compared with the neighboring 1.2 Hz of noise. Since,

it is expected that the background noise level will change

during pump operation, the signal-to-noise ratio is an ideal

quantity to describe these features.

The moving average filter was used to measure the

signal-to-noise ratios throughout the four spectra of each

sample. Consequently, each power data sample had 29 signal-

to-noise ratios associated with it. Figure 5.2 shows the

filter set on the 170 Hz frequency. To compute the signal-

to-noise ratio, the area beneath the signal .in the white

box, was compared with the area beneath the background noise

in the grey boxes. The corresponding signal-to-noise ratios

from the good and bad samples would later be compared to

help predict the pump's condition.
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5.4 Creating the Pattern Vector

Now that the rugged signal features had been

quantified, it was time to establish a pattern for each

sample. This pattern would be formed from the 29 signal-to-

noise ratios calculated for each sample. Each signal-to-

noise ratio would serve as a component of a 29 dimensional

pattern vector. This pattern vector would act as a

fingerprint for each individual sample. It would be this

fingerprint that would later be used to classify the pump

condition that created it.

In this instance the pattern vectors consisted of

components with identical units(W/W). This need not be the
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case. Under different circumstances, one component could

have units of volts while another has units of amps. The

important aspects of the vector are that the order of the

components remain constant and that the components are

calculated in an analogous fashion.

5.5 The Nearest Neighborhood Technique

Once the pattern vectors had been formed for each of

the individual samples, it was time to apply them to a

classification routine. The first scheme implemented was

the nearest neighborhood technique(Kapouleas 177). This

procedure involved comparing the sample test pattern vectors

with the average good and the average bad pattern vectors.

The first step was to create the average good and bad

pattern vectors. To accomplish this two sets of templates

were formulated using a training set. The training set

consisted of samples whose classification was previously

known by the computer. Using the training set, the four

distinct templates were created for both the good impeller

and the eroded impeller. The moving average filter was

implemented to quantify the previously determined rugged

signal features. Then, both the average good and the

average bad template vectors were created using these

signal-to-noise ratios.

After creating the template pattern vectors, the test

set was applied to the classification scheme. The test set
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consisted of pattern vectors whose condition was unknown to

the computer, and that were not involved in the formation of

the templates. The mean squared distance(D) between the

test pattern vector and each of the template vectors was

calculated using the following formula:

[(a(l)_-b(1))2+(a(2) b(2)) 2 +(a(3) b(3)) 2 +...+(a(n)-b(n))] 5.1

The test vector was then classified as the template vector

that produced the smaller distance value (D).

The nearest neighborhood technique can also be

perceived visually. Figure 5.3 is a visual representation

of a three dimensional vector space, as opposed to the 26

dimensional vector space that was actually created. In this

space each dimension represents a component of the pattern

Z Good se of training vectors

Dbad

Bad set of training vectors

Figure 5 .3-A three dimensional vector space
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vector. One sphere represents the volume over which the

good set of training vectors was located, while the other

sphere represents the volume over which the bad set were

located. The vectors drawn to the center of each sphere

correspond to the good and bad template vectors. The mean

squared distance was then calculated from the test vector to

each of the template vectors. In this case the test vector

was closer to the good template vector and would be

classified as a signal produced from a good impeller.

It is important to note that the nearest neighborhood

technique weights each of the individual components of the

pattern vector equally. Using this technique, 90% of the

test set was classified correctly. Even in the worst case

where the system broke down, 19 of the 29 individual

components were classified correctly. This led to the

hypothesis that weighing the components differently would

lead to a higher classification efficiency.

5.6 The Perceptron

In order to weight the individual components

differently, a simple neural net known as a perceptron(Kosko

187) was implemented. The structure of the perceptron can

be seen in Figure 5.4. The perceptron multiplies each of

the individual components of the pattern vector by a

specific weight. These weighted components are added
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Figur. 5.4-The perceptron

together and then added to an offset B. The function

hardlimit is equal to I when the input is greater than 0 and

equal to 0 when the input is less than or equal to 0.

Consequently, when the total sum is greater than 0, the

neuron fires producing a value of A=1. If the total sum is

less than 0, then the neuron does not fire producing a value

of A=0. The perceptron was designed to produce a value of

A=l for a good impeller, and a value of A=O for an eroded

impeller.

The weights and offset B are calculated in a recursive

training process following an established learning rule. To

train the neuron though, it first must be initialized. This

is done by setting the weights and the offset to small

random values. This provides enough variation in the neuron

to take advantage of the learning rule. A batch of training

I
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vectors are then applied to the perceptron. Again, the

training set consists of samples whose classifications are

known to the computer. The weights and offset are adjusted

until all members of the training set are classified

correctly. The following rule is used:

Case (1) If after the presentation of a training vector,

the output of the neuron is correct, the weights and offset

remain unchanged.

Case (2) If the output of the neuron was a 0 and should

have been a 1, the weights are increased by the value of the

individual components of the training vector, and the offset

is increased by 1.

Case (3) If the output of the neuron was a 1 and should

have been 0, the weights are decreased by the value of the

individual components of the training vector, and the offset

is decreased by 1.

Following this rule it took approximately 100,000 recursions

to train the perceptron. It is important to note that 100%

classification of the training set can only be achieved if

the vectors are linearly separable. Otherwise, a more

complex neural network must be employed.

It was now time to apply the test set. Again, the test

set consisted of samples whose classification was unknown to

the computer, and that were not involved in the training

process. Using the trained perceptron 100% of the test set

was classified correctly. By simply shifting the weights of
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the individual components it was possible to raise the

classification efficiency from 90% to 100%. Thus, the

objectives of the project had been met. The signal

processing routines and classification techniques had been

developed to diagnose the eroded impeller condition.
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The Future

In the past, a pump would have had to been shut down

and taken apart to be examined. Due to their location,

certain pumps could never be monitored under normal

circumstances. In the worst case, the fault may have led to

a complete system shut down and a prolonged stay in dry

dock. These algorithms are the basis for a non-invasive

monitoring system that removes this risk. Currently, with a

power meter, an analog-to-digital converter, a computer, and

15 minutes of computation, a pump can be monitored for the

eroded impeller condition. In the future the system will be

expanded to include more phases of pump operation.

This is only the beginning of the project. Although

the basic algorithms have been created, they would most

likely have to be fine tuned to fit each submarine. This

will require more data and research. This project will also

expand to encompass more aspects of pump operation. This

will entail the classification of other fault conditions

that will include, but will not be limited t,:

(1) cavitation

(2) impeller nut back-off, and

(3) mechanical seal leakage

Eventually, this system will provide the Navy with an

efficient and inexpensive method for the complete monitoring

of all pump operation.
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